Radical Agents that Reason, Learn, & Collaborate

Shiwali Mohan
shiwali.mohan@gmail.com

February 14, 2025



Classical Agents: A Primer
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Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.
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Generative Al Agents*

Domain-Agnostic

~<+——knowledge

*LLM-only; may not aply to LVLMs [LLaVa: Liu et al. 2023] and LAMs [Wang et al. 2025]




ReACT [Yao et al. 2023]

Domain-Specific

Domain-Agnostic

Examples

ICL [Brown et
al. 2021]

<+——knowledge

Documents
RAG [Lewis et
al. 2020]

*LLM-only; may not aply to LVLMs [LLaVa: Liu et al. 2023] and LAMs [Wang et al. 2025]
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Tradeoffs in Agent Design Space

Reliable

Classical Agents
problem-specific design

principled decision making @

human interaction (%)
extensible (x)

Open-world

Radical Agents?
general-purpose design @
principled decision making @
human-interaction®
extensible @

GenAI Agents

problem-agnostic training

principled decision making (2) iHe etal. cs.1G 20241
® human interaction @

extensible (



Q1: What Domain-Specific  Domain-Agnostic
knowledge?

Examples

ICL [Brown et

al. 2021]
ReACT [Yao et al. 2023]

SFT

~+——knowledge

®.
[

Q3. Does it work?

Q2: How to
decide?

Documents
RAG [Lewis et
al. 2020]




Approach

*not neural network models
kQ1 0 \INQat Sets up the decision space
nowledge?
World models
What futures are possible?
ot - stst, et st+1
[Johnson-Laird CS1980]

[Garrido et al. CVPR2024]
[LLaVa; Liu et al. 2023]
[LAM; Wang et al. 2025]

Task models
Which futures can/should | achieve?
parameters, goals, soft & hard

constraints, rewards
[Newell AP1979]

[Weld AIM1994]

[Kamar and Horvitz, AAMAS2015]

Human models
What is desirable to the user?

needs, beliefs, desires, prefrences,
(Grosz and Sidner, CL1986]

Kamar et al., AAMAS2012]

Wilder et al., JJCAI 2020]

[MAIA: Tange et al., NeurIPS 2024]



Approach

Q2: How to
decide?

Reasoning Models
Orca-2 qwitra et al. 2023)
DeepSeek-r1 (Guoetal. 2025]

Math
word

Post-training Control
problems

Chain-of-thought (wei et al. NIps 2022)
Reflexion [shinn et al. NIPS 2024]

Sequential decision making?

* generate space of futures

+ constrain based on capabilities, action properties ...
* bias by human beliefs, needs, preferences

More research needed

1. Validate [verma et al. 2024)

2. Augment [LLM-modulo Kambhampati et al. 2024]
3. Blend

4. Architect



Approach

®.

Q3: Does it work?

Beyond measuring accuracy on generic benchmarks

A Rigorous Evaluation Paradigm

0. Human-centric metrics isansal et al. AaA12021]
1. Realistic benchmarks isachdeva etal. 20241
2. Acceptability wietal. TocH12023
3. Alignment
4.Impact measurement
a. Observational study imozannar, chen et al. 20241
b.Randomized control trial



Experience

World models: Piotrowski et al. ICAPS2023, Piotrowski etal.  Q1: What
ICAPS2021 ?
Task models: Grover and Mohan, ICAPS-D2024, Mohan et al. knOWIedge'
IUI-W2019, Mohan and Laird AAAI2011

Human models: Ramaraj et al. ROMAN2021, Mohan TiiS2021,

Mohan et al. TiiS2020, Mohan et al. JAIR2019, Mohan et al. 2017

Learning Fast & Slow
Laird and Mohan AAAI2018, Blue

Sky Award

Realistic benchmarks Open-world Learning
Rejagopal et al. HealthiI2025 ~ Mgﬂiﬁf é'tglljzl(g\is-ozom
Observational/Choice Studies - Piotrowski et al. AAMAS2023
Mohan TiiS2020
Mohan et al. JAIR2019 - mﬁ;c;"; 'I:csé(zl(.;grnmg
Mohan et al. AIES2019 X 2: How to - A

Q3. Does it work? Qd ide? Mohan and Laird AAAI2014
ac‘lr']pal:l_tliglz-;;?torial design e Analogical Generalization

ohan Tii

Springer et al. JMIR2017 Hancock et al. JAIR2025

Pirolli et al. JMIR2017 (in-review)



Open World Learning

Q1: What
knowledge? World Model

-I Metacognitive
Reasoning
Q3. Does it Q2: How to
work? decide?



Agents in Open Worlds

Agents are built with capturing the nature of deployment

Model-based: representation, decision process
ML: datasets, training regime, simulations
Deployment can diverge or evolve from design assumptions

Resource intensive redesign or retraining
with NIWC/US Navy

5 scientists, 2 faculty members (Penn State and Ben Gurion), students and interns
Publications

+ Open-world learning: AlJ2024, ICAPS-D2024, AAMAS2023, AAMAS-W2023, AAAI2021, ACS2020
* Planning: ICAPS2023, SOCS2023, AAAI2023, AAAI2022, ICAPS-D2021
* Machine learning: CoLLA2022

System-level invention submission

Only team (of 12) to transition technology to US Navy/NIWC



: a meaningful change in the world, a significant shift in the
distribution. Examples: a new object, a new skill, a new goal, a new constraint

: deep reinforcement learning [Mnih et al. NeurIPS2013]

+ Represents knowledge as undifferentiated network weights

* Fails drastically when novelty presents itself

* Requires thorough retraining

[ Reward l
. . . Agent ONN ::" A
: life-long, continual learning ‘
. . . . . . S\ale[ %E,,_ Take __|Environment
. ; require no human intervention in redesign or retraining RO | action
paramater 8
. ; learn post-design, during performance T T

. ; build upon what was known previously



HYDRA

Mohan et al. AI) 2024; Piotrowski et al. AAMAS 2023

: computer vision, planning, deep ML, goal reasoning, knowledge diagnosis & repair

Key innovations: an and
Base Agent Metacoginitive Reasoning
A A
r observations Y N

(images, state variables, reward) "~ """ """ TTTTTTT TR 1

Environment
- sual .
. v Reasoning || S — Heuristics Search
o S — Unknown over Model
State ‘ object Manipulation
Trajector
Inference Operators (MMO)

[ — [ .....
Plan Aspect MMQOs:
Inconsistency Charachterization

Task Decision |=-- fluents +- \delta
Selection

Rules
Reward
Divergence

1.Detection 2. Characterization 3. Accomodation
S—
recognition
model

Action
Reasoning
& Execution

action Reprioritization

Planner




A Demonstration

Open world learning in Angry Birds


file:///Users/shiwalimohan/Misc/JobSearch2025/Talk/slides/images/owl/media1.mp4

How does it work?

1. Explicit event model

(:process flying
:parameters (?b - bird)
:precondition (and (bird_released ?b)
(= (active_bird) (bird_id ?b))
(> (y_bird ?b) 0))
:effect (and (decrease (vy_bird ?b) (* #t (gravity))
(increase (y_bird ?b) (* # (vy_bird ?b))
(increase (x_bird ?b) (* #t (vx_bird ?b)))))

3. Space of model design

repairable fluents = {x, X2, X3, ..., Xp }CX€D
deltas = {x1: 1, x2: 0.2, x3: 0.1, ..., Xp: Ap} €R"

2. Definition of inconsistency

Observation  Expectation

C(x, D,7) = ﬁ -7 IS}t - Sex, D)l

Discount
factor

4. Search to minimize inconsistency




Empirical Results

* Resilient Planning-Static Planning-Adaptive (HYDRA)
novelty: mass of cart X10 novelty: mass of cart X10
* Fast 1.0 10
* Interpretable by design 0.8 08
. Bos6 206
Repair 2 2
204 Y04
[mcart: 9.0, lpole: 0, mpole: 02 02
0, forcemag: 0, gravity: 0, 00 00
: . : . 0 5 10 15 20 25 30 o 5 10 15 20 25 30
.1, resulting inconsistency: episodes episodes
0.0067561 DQN-Static DQN-Adaptive
novelty: mass of cart X10 novelty: mass of cart X10
1.0 | 1.0 |
0.8 0.8
go.e g 0.6
= =
o4 204
0.2 0.2
0.0 0.0
5 10 15 20 25 30 0 5 10 20 25 30

15
episodes episodes



A Domain-Independent Framework

CartPole 2D/3D: continuous state and action; continuous control <

problem
AngryBirds: continuous state and action; initial
condition problem
MineCraft: discrete state and action; goal
achievement problem

UAV: continuous state and action; mission flying




ID Type Description Evidence
CartPole++  ScienceBirds PogoStick
D A D A D A
1 Attribute New attribute of a known v v v v v v
object or entity
2 Class New type of object or en- v/ v v
tity
3 Action New type of agent behav- * * * * * *
ior/control
4  Interaction New relevant interactions v v v v
of agent, objects, entities
5  Activity Objects and entities op- v/ v v
erate under new dynam-
ics/rules
6  Constraints Global changes that im- v v v v v v
pact all entities
7  Goals Purpose of the agent * * * * * *
changes
8 Processes New type of state evolu- v

tion not as a direct result
of agent or entity action




Blending GenAl and Model-based Reasoning

1. Explicit event model

(:process flying
:parameters (?b - bird)
:precondition (and (bird_released ?b)
(= (active_bird) (bird_id ?b))
(> (y_bird ?b) 0))
:effect (and (decrease (vy_bird ?b) (* #t (gravity))
(increase (y_bird ?b) (* # (vy_bird ?b))
(increase (x_bird ?b) (* #t (vx_bird ?b)))))

repairable fluents = {xy, X3, X3, ... , Xn } CX€D
deltas = {x3: 1, x2: 0.2, x3: 0.1, ..., Xp: Ap} €R"

2. Definition of inconsistency

Observation  Expectation

C(x. D7) = 15 320" IS(<)lil = (. D)l

Discount
factor

4. Search to minimize inconsistency




Interactive Task Learning

Q1: What
knowledge? Task Model

——query/percept: —

\/

Agent

Realistic ~ Concept learning

datasets with graph
. Q inference and

generalization
- 2: How to

, Q

Q3. Does it work? decide?

;response/act—'l



Agents for Unknown Tasks

Agents are
+ All tasks cannot be predicted at design time
* General agent design/training
* Generally-learning agent

with Xerox
* How can agents learn new concepts and tasks like human children?
* 5scientists & engineers, interns
* Human-centered approach to agent design
* 5 patents on NL interaction with physical machines

* JAIR 2025 under review, IEEE RO-MAN 2021, ACS 2020; 2 theses UM,
Northwestern

+ Contributes to a 10 year legacy of Interactive Task Learning research



Children Learn in Social Constructs

Earliest learning occurs through caregiver-guided interactions with the world - guided, embodied learning




How Do Humans Teach?

Ramaraj, Ortiz, and Mohan IEEE ROMAN 2021

1. elements of the domain ontology

"
Robot, these objects are cubes.

* N =10, teach the robot how to build a multi-colored wall
* Video recording of teachers, inductive thematic analysis

* People taught

1. Compositional concepts; motivates

2. Incrementally; motivates

3. Expressing varied intentions; motivates
4. In a structured curriculum; motivates

2. incremental teaching

SUONUIIUI PaLIeA €

Can you ma
and blu

Video


file:///Users/shiwalimohan/Misc/JobSearch2025/Talk/slides/images/itl/P10-clip.mp4

Human-Teaching Inspired Curriculum

Teach Measure.g.enerality Measure s?ecificity
(true positive score) (true negative score)
inform: green cone verify: green cone verify: green cone

inform: yellow cone left of red cylinder  verify: blue cylinder left of red sphere

react: move red cube to left of blue
cube cone cylinder

wiNjN2144Nd [e3U3WAIDUI




AILEEN

Mohan et al. ACS 20

: computer vision, spatial reasoning, task & goal reasoning, planning, analogical
reasoning & generalization, inverse kinematics

Natural Language Processing

Insights from Finte State Transducer "
human-participant OO Hoduce
studies (¥2d e ¢ Learning
(Ramaraj et al Computer Vision » "
2020, 2021)
Spatial Encoding Task & Goal Reasoning: Soar (Laird 2012)
SRLib s Y|

Interaction Channel

Curriculum verify: "a green cylinder
intent content Auto-encoder

= EiE
Artificial .
; (L
Interactive Jigsaw loss
Trainer T ~ !
: [ 1
T \JEnv!ronment & Inverse Kinematics v
1al Channel n = =
: & Concept Memor
Evaluation £ a 4
Protocol ’ e SAGE (McLure et al. 2015)
- .- ¥ . (Forbus et al. 2016),

MAC/FAC
(Forbus et al. 1995)




Factored Task Models

Task T

parameters: plate, bread, knife, toaster [T(0p, Oy, O, Ot)]
predicates: state [toasted(oy)], configuration [on(oy, 0p)]
availability: bread exists, knife exists, plate exists [0p, 0y, Oy, Or —
propose(T)]

children tasks: go-to, slice, retrieve

policy: if holding bread and not sliced, slice bread [holds(o,) A
—sliced(op) — slice(op)]

termination: bread is toasted, bread is on plate [toasted(o,) A
on(op, 0p)]

model: [0, 0y, 0, 0t — toasted(o,) A on(0p, 0p)]

performance criterion: shortest distance

Padmakumar et al. 2022: ‘Make a plate of toast”

~ohservations
fosvacTask. = PI’T;;:::r e
WMo
acIon

* Benefits vis-a-vis end-to-end representations: composable, incrementally-learnable, hierarchical
* Mohan and Laird AAAL 2014: availability, policy, termination, model

* Kirk and Laird, IJCAI 2019: games, Mininger and Laird, AAAI 2022: complex task hierarchy

* Mohan et al. ACS 2020, Hancock et al. JAIR 2025 (in review): predicates grounded in visuo-spatial

information

20



Interactive Concept Learning

Mohan et al. ACS 2020; Hancock, Mohan, & Forbus JAIR 2025 (in review)
Scene Teacher Scene Graph Task Control Concept Memory

1

N
G ded definiti £ & Pyramid is}on {%}
or:(()(;Jln,oez) erinition o .’ blue cube K[\é @\v

Scene Graph Example.

CV: shapeA(o1), colorA(o1), sizeA(o1),
shapeB(02), colorB(02), sizeB(02)

CDC: nZ(01,02), 0Z(01,02), 0X(01,02)
RCC: touchX(01,02), intersectZ(o1,02)

Cognitive theory of structure
mapping (Gentner AP 1987)
sim(Gs, G¢) =

> e W(e) x corr(e, Ge)
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Interactive Concept Learning
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Interactive Concept Learning
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Grounded definition of
on(o1,02)

Scene Graph Example.

CV: shapeA(o1), colorA(o1), sizeA(o1),
shapeB(02), colorB(02), sizeB(02)

CDC: nZ(01,02), 0Z(01,02), 0X(01,02)
RCC: touchX(01,02), intersectZ(o1,02)

Cognitive theory of structure
mapping (Gentner AP 1987)
sim(Gs, G¢) =

> e W(e) x corr(e, Ge)

Scene Teacher Scene Graph Task Control Concept Memory
/remsvs
(o) —we— | dr2)
<L Pyramid is on {”j O QR
.’ blue cube. (f\kﬁﬂ\ % é/b\
S oo O [ORV)
match’

Yellow box is on ( {fk
green cube. d% O
v

Ballis on [%9\
cylinder. %

i
I
aN'd

(

\

Store—

© O

21



Interactive Concept Learning

Mohan et al. ACS 2020; Hancock, Mohan, & Forbus JAIR 2025 (in review)

Scene Teacher Scene Graph Task Control Concept Memory
retrieve
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A d f :}\ Store—— Hf{; \/\
. Pyramid is on OO0 AN <
Grounded definition of ‘, b e (é\;ﬁ\ %D%/b
) ) o [OX)
on(ol s 02) N R
Scene Graph Example _ 5
. = O‘K:
CV: shapeA(o1), colorA(o1), sizeA(o1), Yellow boxison (<O~ —store—
shapeB(02), colorB(02), sizeB(02) green cube. d% O &
CDC: nZ(01,02), 0Z(01,02), 0X(01,02) VY match’ -
RCC: touchX(01,02), intersectZ(o1,02) — / /O\
Ball is on [%9\ OLZ
. cylinder. % Store—s
Cognitive theory of structure 67840

mapping (Gentner AP 1987)
sim(Gs, G¢) =

. Bcig i; on \59
> e W(e) x corr(e, Ge) e &S “/I\,

[SRVRY

)¢
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Interactive Concept Learning

Mohan et al. ACS 2020; Hancock, Mohan, & Forbus JAIR 2025 (in review)
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Interactive Concept Learning

Mohan et al. ACS 2020; Hancock, Mohan, & Forbus JAIR 2025 (in review)
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Interactive Concept Learning

Mohan et al. ACS 2020; Hancock, Mohan, & Forbus JAIR 2025 (in review)
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Empirical Observations

* Experimental scheme
+ Atrial of N lessons
+ Lesson: an instantiation, generality measurement (true positive
rate), specificity measurement (true negative rate)
* Findings:
. : visual, spatial, action & events, composite objects
. : recognition and creation
. : learns from few examples, rapid generalization, small
leakage
. : learns only when needed

* A demonstration

_nﬂ"lii!m.m.;

N

o
c
S
S
w
«

5
]

visual

1 15
inform lesson

spatial

s 10
# inform lesson

action

test score

v
I
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Architecting LLMs with Task Reasoning

Natural Language Processing

Finite State Transducer

Insights from
human-participant SO - ::E?uchve
studies (¥24 e ¢ Learning
(Ramaraj et al Computer Vision ~Or1Keg i)
2020, 2021)
Spatial Encoding Task & Goal Reasoning: Soar (Laird 2012)

QSRUb @ Syreh Loag Terrs Mo
Yolo(Redmonetal 201 | (Gatovisetal 2016 Eim e

Interaction Channel

Symholc Working Memory

a green cylinde
content

Curriculum verift
Tntent Auto-encoder

Artificial =
Interactive Jigsaw loss.
Trainer [ [
" [ = 1
T \ / Env!ronment & Inverse Kinematic: *
[— Situational Channel ; p Y =
: s Concept Memor
Evaluation 4 f P Y
e AGE (McLur 1. 2015)
Protocol ’ / e SAGE (McLure et al. 2015)
o . # . (Forbus et al. 2016), erolzed Concept

MAC/FAC
(Forbus et al. 1995)
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Architecting LLMs with Task Reasoning

rover and Mohan, ICAPS demonstration 2024

Linguistic Reasoning Sequential Decision Making
percepts—)

World - AI2Thor
Few-Shot |_> Identification rrent
i

state g
ISR

|
NLTask  In-context Learning ]
Request v
Large
flask planning

La"guage Construction

lodel

[1anguage: please clean that mug.
lSR {INTENT: request, action:0: {TYPE: clean-task, obj:0;

* SoA frames language-to-action problem as a : e ———
:,{, \znguzge
2| ISR: ...

* Our approach frames it as a prob]em language: Please place the bread in the fridge.

Z‘ISR {INTENT: request, action:0: {TYPE: find-and-put-task,

+ In-context learning for language to meaning representation
» Grounded reasoning to instantiate a goal
+ Planning to generate a sequence of actions isa(o1, door) isa(o2, stove),sa (03, frdge), isa (04,

knife), isa (05, bread), isa (06, countertop)....,
at(o1, <loc1>), at(02, <loc2>), at(03, <loc3>).

* Ongoing work: concept memory with LLM-based pattern beonaneros) sarioeos
matching Generated Goal | n(05,03)

0bj:0: {SPEC: any, TYPE: apple}, obj:1: {SPEC: unique, TYPE:
| bread), rek:0: {TYPE: in, ARG1: 0bj:0, ARG2: obj:1}}}
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Health Behavior Coaching

Q1: What
knowledge? Human Model

Knowledge

query/percept

Realistic datasets
Expert alignment '
Acceptability ~
Observational
Study -
Q3. Does it work?

I—response/act




Agents for Human Learning

Agents are designed for

+ Human are continual learners and evolve throughout our lives UNHEALTHY BEHAVIORS CONTRIBUTE
+ Adoption depends on responsiveness TO HIGH HEALTHCARE COSTS

with Kaiser Permanente _ _
. v CONSUME
* How can agents help people develop healthy behaviors? Tin 5 USE 1.3 ARE Tin ALCOHOL
o ADULTS TOBACCO : ADULTS OBESE : ADULTS EXCESSIVELY"
* Publications v

- AL AAVAAIZ017 peeee - oet o peeeed

* HCI: TiiS2020, TiiS2021

+ Medicine: JMIR2019, JMIR2017 DIRECT HEALTHCARE SPENDING
» Engineering: EMBS2016

* First ecological, long-term evaluation of adaptive Al behavior S] 7“ S] 47 S] BE

+ Collaboration with psychologists, user-experience BILLION EILLID.N B‘IvLLIO'N‘

researchers, clinicians, patients
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Coaching Agent in mHealth

* Support sedentary individuals in regular exercise E:Oo
* AHA recommendation: 30 minutes, 5 times a week o- o
* Designed in
Collaborative Adaptive Goal Setting s B R Tre s

1. Determine current exercise volume

. Propose different extents, evaluate with user

. Assume a uniform step growth model until AHA goal

. Schedule exercise for the week, maximize opportunity

. Measure behavior, self-efficacy, & difficulty

o U A W N

MET-minutes/week

. Revise growth model, replan next week

sessment 26




Evaluation Paradigm

Mohan et al. TiiS 2020; Mohan et al. AAAI 2017

. . ) : choice studies with expert panel
: simulated patient profiles

2) Safe and minimizes injury b) Useful in progressing towands ANA goal

900 HET IR R i

fa’m'mim d m" ] Agree _\______'__]i
~ I T 'H
% W Trainee A: no exercise, moderate growth m -I l -' | s ] l ’] I .l l :
a;; [ Trainee B: no exercise, low growth | i o & it 1. ,:‘ | H o
> nagree

5 675 Trainee C: ligt exercise, low growth Bl g
5 Sarvagly
s Basgree
= Expert T2 3 4 s e 7 8 .83 & 8 8 1 8
= evabuation
T 450 € Likely 10 be completed ) Difsculty given past performance
“@ Stroegly
& P n -
N~ smett | A A | l ] l
g 42 Maarly i 18:° [I I
5 duagree | Fe ToPon w o ‘m‘mmdm-w
3 | EEEN | R
= e | THEER

0 —_—

week 1 2 3 4 5 6 7 8 D Conk ettt | B 30 4 BE D 3 4 5 ¢ s

[ Romserey Week in progras

27



Evaluation Paradigm

Mohan et al. TiiS, 2020; Hartzler et al. EMBC 2016

o ) . ecological observational study
cognitive walkthroughs with patients N=21. 6 weeks
N=15, diabetes and depression )
. . 1. Increased exercise volume by 20%
+ Could provide users with control (P9) o
o . 2. Over-optimistic with self-assessment
* Helps you take responsibility (P1), with more

choice (P7)

+ Allows you to set goals that you can strive for (P8).

3. Personalized goals + collaborative selection led to
more successful completion

m 2) 3)
Independent Variables| Goal Volume Performed Exercise  Performed Exercise

Accepeaditiny
Awree [ M Week 9.608" 12392° 0.487"

" (5.166) (12.202) (12.007)
|| (] Goal Volume 0.618"*

{ o
g o - (0.119)
| S— s Mean Dependent Variable 601.098 392250 392.250
» 23.138) (24.830) (24.830)
] [ro— Random effect v v v
® . - Marginal R® 0.004 0.005 0378
— B Cwmeen Conditional R 0,868 0,662 0.639
- T e Ut Wb Table 2. Mixed-effect linear regression models for goal volume (column 1) and performed exercise volume
- (column 2). Volume is measured in MET-mins/week. The numbers in parentheses are standard errors. *** p

<0.001,*" p< 005" p<0l
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Evaluating GenAl Systems on Realistic Datasets

Rajagopal et al. HealthIUI at ACM IUI 2025
: can GenAl support people’s informational needs?
* Studied patient-radiologist dyadic sensemaking interaction
+ Identified 10 different themes and curated a realistic QA dataset

* Evaluated ChatGPT and Claude wrt expert responses.

1. High error rate (ChatGPT: 20%, Claude: 40%)
2. Inability to ground interaction in images
3. GenAl responses were long; had

4. Radiologist response geared towards helping decisions, while GenAl
responses towards extensive enumeration and definitions

Quentan [ e Pwma rchien o are Py prasert 1 1 sy e on ek O & ol spmciicaty o carcer s marsfesiing foef. Or aars e duiesion of Par?
ascingn
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Agent Frameworks

Complex behavior emerges from an interplay of diverse, modular reasoning and execution

User Request Response

Orchestrator

Task Ledger Progress Ledger

agentA agentB agentC agentD

Bansal, G., Vaughan, JW., Amershi, S., Horvitz, E., Fourney, A., Mozannar, H., Dibia, V. and Weld, D.S., 2024. Challenges in Human-Agent
Communication. arXiv:2412.10380

Fourney, A., Bansal, G., Mozannar, H., Tan, C., Salinas, E., Niedtner, F., Proebsting, G., Bassman, G., Gerrits, J., Alber, J. and Chang, P., 2024.
Magentic-one: A Generalist Multi-Agent System for Solving Complex Tasks. arXiv:2411.04468. 30



Agent Frameworks

Complex behavior emerges from an interplay of diverse, modular reasoning and execution

User Request Response
Semantic
Orchestrator  grchestration
Task Ledger Progress Ledger
agentA agentB agentC agentCog
agentO agentP
Agent Heterogeneity Agent Complexity

Bansal, G., Vaughan, JW., Amershi, S., Horvitz, E., Fourney, A., Mozannar, H., Dibia, V. and Weld, D.S., 2024. Challenges in Human-Agent
Communication. arXiv:2412.10380

Fourney, A., Bansal, G., Mozannar, H., Tan, C., Salinas, E., Niedtner, F., Proebsting, G., Bassman, G., Gerrits, J., Alber, J. and Chang, P., 2024.
Magentic-one: A Generalist Multi-Agent System for Solving Complex Tasks. arXiv:2411.04468. 30



Semantic Orchestration

Augment GenAl inference with compositional SDM (Q2/reasoning)
Modular organization of decision control; help user set appropriate expectations

Run a program
that <does o
task> SpecT

Evaluator
Generator (o m

NO__catisty T2

Yes
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Semantic Orchestration

Augment GenAl inference with compositional SDM (Q2/reasoning)
Modular organization of decision control; help user set appropriate expectations

Extract
Design ifo
Pattern Yes
[)
No
Extract
Run a program — s
that <does A
task> o S R
SpecT
T T
Code Evaluator
Generator coge m
Evaluator
Generator Coge m
No— " satisfy T2
No Evaluator
satisfy T? Yes, code o]
No
Yes
satisfy D?
Yes
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Semantic Orchestration

Augment GenAl inference with compositional SDM (Q2/reasoning)
Modular organization of decision control; help user set appropriate expectations

Extract

Design

Pattern

No
Run a program
that <does o
task> SpecT
T T-

Evaluator
Generator (o m

NO__catisty T2

ifD

Code.
Generator

No.

Extract

code

satisfy T2

Yes, code

satisfy D?

Evaluator
m

Evaluator
01

pre-conditions:
user input
t

Extract Extract

Tosk Design

SpecT Pattern
D

pre-conditions: pre-conditions: "
new T or eval_T(fail) or new code and T
new D or eval_D(fail) asserts: eval T

asserts:new code  priority: !
Code Evaluator Eo
Generator m )

pre-conditions: new_code
and eval_T(pass)
priority: ~

Working Memory

Decision Process

propose - evaluate - execute
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Agent Heterogenity

Agents vary in function, purpose, and inference

Content Lesson
‘ Probl Probli Pro’lzllem
~ Scaffolds
Learning
intent
Orchestrator
Objective Ih"dida"b :
- R
Experience a;[gcT;X;[ fe”r‘m;lee
sim(c |E, CO) *
Course nov(c|E)*
Ontology P(c|E) I
Curriculum Skill Lesson Problem
Agent Estimator Planner Generator
World Model Human Model  Task Model ~ Human Model
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Agent Complexity

Agent with multiple cognitive capabilities

Procedural Episodic Semantic
Memor Memory Memory
how do1d )2 what happened what is world structure,
craoloc previously? concepts?
A A

(Encoding) (Learning)
' [ v |

Working Memory

what currently exists world, task, reasoning?

Perception Action

| 1

uoispaq

I
[ Sensors and Actuators

Laird, J.E., Lebiere, C. and Rosenbloom, P.S., 2017. A Standard Model of the Mind: Toward a Common Computational Framework Across
33

Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics. Al Magazine, 38(4), pp.13-26.



Agent Complexity: Cognitive Architectures for the Real World

Episodic Memory Semantic Memory
Procedural Memory what happened what is world
Conceptual howdoIdox? previously? structure, concepts?

Understanding

A A
Pattern Pattern
Matching Matching
Y Y

Tas|
[ Working Memory

Pattern
Matching

Contextual

o
@
Q.
@,
)
=

ViT (Dosovitskiy et al. ICLR2021) ~ LDM (Rombach et al. CVPR2021) DP (Chl etal. RSSZOZ3)

Concrete =tk ). .l_— ——— _.I —

Inference hometd

BaULE ”111"

O
-

Also, Sumers, T.R.,, Yao, S., Narasimhan, K. and Griffiths, T.L., 2023. Cognitive Architectures for Language Agents. Transactions in Machine
Learning Research. 34



Thank You!

World models: Piotrowski et al. ICAPS2023, Piotrowski et al. Q1 : What
ICAPS2021 ?
Task models: Grover and Mohan, ICAPS-D2024, Mohan et al. knowledge.
1UI-W2019, Mohan and Laird AAAI2011

Human models: Ramaraj et al. ROMAN2021, Mohan TiiS2021,

Mohan et al. TiiS2020, Mohan et al. JAIR2019, Mohan et al. 2017

Learning Fast & Slow
Laird and Mohan AAAI2018, Blue
Sky Award

Open-world Learning
Mohan et al. Alj2024
Piotrowski et al. ICAPS-D2024
Piotrowski et al. AAMAS2023

Realistic benchmarks
Rajagopal et al. HealthIUI2025

Observational/Choice Studies
Mohan Tii52020

Mohan et al. JAIR2019 Interactive Task Learning

Mohan et al. AIES2019 . 2: How to Mohan et al. ACS2020
Q3. Does it work? Qd ide? Mohan and Laird AAAI2014
achaert_izlz-(f)Zﬁtorial destgn S Analogical Generalization
ohan Tii
Springer et al. JMIR2017 Hanccck et al. JAIR2025
Pirolli et al. ]MIR2017 (in-review)

Shreya Rajagopal, Poorvesh Dongre, William Hancock, Preeti Ramaraj, Sachin Grover, Wiktor Piotrowski, Jacob Le, Kalai
Ramea, Matthew Klenk, Charles Ortiz, Roni Stern, Johan de Kleer, Matthew Shreve, Victoria Bellotti, Bob Price, Anusha
Venkatakrishnan, Andrea Hartzler, Peter Pirolli, James Kirk, Aaron Mininger, Ken Forbus, John Laird
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