
Radical Agents that Reason, Learn, & Collaborate

Shiwali Mohan
shiwali.mohan@gmail.com
February 14, 2025



Classical Agents: A Primer

Knowledge

Agent

perceive

act

Challenges: brittle logic-based inference, machine language interaction
Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.

1



Classical Agents: A Primer

Knowledge

Agent

perceive

act

Current

Futures

Rule-based

RL

Model-based 

sequential decision making
over a decision space

?

Challenges: brittle logic-based inference, machine language interaction
Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.

1



Generative AI Agents*

Web

SFT

RLHF

Domain-Agnostic

knowledge

query

response

Agent

*LLM-only; may not aply to LVLMs [LLaVa: Liu et al. 2023] and LAMs [Wang et al. 2025]

2



Generative AI Agents*

Web

SFT

RLHF

Domain-Agnostic

knowledge

query

response

Agent

Examples

Documents

Domain-Specific

perceive

act

ReACT [Yao et al. 2023]

ICL [Brown et 
al. 2021]

RAG [Lewis et 
al. 2020]

*LLM-only; may not aply to LVLMs [LLaVa: Liu et al. 2023] and LAMs [Wang et al. 2025]

2



Tradeoffs in Agent Design Space

Re
lia
bl
e

Open-world

3



Tradeoffs in Agent Design Space

Re
lia

bl
e

Open-world

Classical Agents
problem-specific design
principled decision making 
human interaction
extensible   

3



Tradeoffs in Agent Design Space

Re
lia

bl
e

Open-world

Classical Agents
problem-specific design
principled decision making 
human interaction
extensible   

GenAI  Agents
problem-agnostic training
principled decision making
human interaction
extensible 

[He et al. cs.LG 2024]

3



Tradeoffs in Agent Design Space

Re
lia

bl
e

Open-world

Classical Agents
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principled decision making 
human interaction
extensible   

GenAI  Agents
problem-agnostic training
principled decision making
human interaction
extensible 

[He et al. cs.LG 2024]

Radical Agents?
general-purpose design
principled decision making
human-interaction
extensible  
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Approach

query/percept

response/act

Agent

World models
What futures are possible?
ot ? st, st, et ? st+1
[Johnson-Laird CS1980]
[Garrido et al. CVPR2024]
[LLaVa: Liu et al. 2023]
[LAM: Wang et al. 2025] 

Task models
Which futures can/should I achieve?
parameters, goals, soft & hard 
constraints, rewards 
[Newell  AP1979]
[Weld AIM1994]
[Kamar and Horvitz, AAMAS2015]

Human models
What is desirable to the user?  
needs, beliefs, desires, prefrences, 
[Grosz and Sidner, CL1986]
[Kamar et al., AAMAS2012]
[Wilder et al., IJCAI 2020]
[MAIA: Tange et al., NeurIPS 2024]

* not neural network models
Sets up the decision space

Agent

Q1: What 
knowledge?
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Approach

query/percept

response/act

Agent

Q2: How to 
decide?

Reasoning Models
Orca-2 [Mitra et al. 2023]

DeepSeek-r1 [Guo et al. 2025]
..

Post -t raining Cont rol
Chain-of-thought [Wei et al. NIPS 2022]

Reflexion [Shinn et al. NIPS 2024]

....

Sequent ial decision making? 
- generate space of futures
- constrain based on capabilities, action properties ...
- bias by human beliefs, needs, preferences

More research needed 
1. Validate [Verma et al. 2024]

2. Augment [LLM-modulo Kambhampati et al. 2024]

3. Blend
4. Architect

Math 
word 
problems
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Approach

query/percept

response/act

Agent

Q3: Does it work?

Beyond measuring accuracy on generic benchmarks

A Rigorous Evaluat ion Paradigm

0. Human-centric metrics [Bansal et al. AAAI2021]

1. Realistic benchmarks [Sachdeva et al. 2024]

2. Acceptability [Li et al. ToCHI2023]

3. Alignment 
4. Impact measurement

a. Observational study [Mozannar, Chen et al. 2024] 
b.Randomized control trial
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Experience

Text

World models: Piotrowski et al. ICAPS2023, Piotrowski et al. 
ICAPS2021
Task models: Grover and Mohan, ICAPS-D2024, Mohan et al. 
IUI-W2019, Mohan and Laird AAAI2011
Human models: Ramaraj et al. ROMAN2021, Mohan TiiS2021, 
Mohan et al. TiiS2020, Mohan et al. JAIR2019, Mohan et al. 2017

Learning Fast  & Slow
Laird and Mohan AAAI2018, Blue 
Sky Award

Open-world Learning
Mohan et al. AIJ2024
Piotrowski et al. ICAPS-D2024 
Piotrowski et al. AAMAS2023

Int eract ive Task Learning
Mohan et al. ACS2020
Mohan and Laird AAAI2014

Analogical Generalizat ion
Hancock et al. JAIR2025 
(in-review)

Realist ic benchmarks 
Rajagopal et al. HealthIUI2025

Observat ional/Choice Studies
Mohan TiiS2020
Mohan et al. JAIR2019
Mohan et al. AIES2019

RCT part ial-factor ial design
Mohan TiiS2021
Springer et al. JMIR2017
Pirolli et al. JMIR2017

query/percept

response/act

Agent

Q2: How to 
decide?Q3. Does it work?

Q1: What 
knowledge?
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Open World Learning

World Model

Metacognitive 
Reasoning

query/percept

response/act

Agent

Knowledge

Q2: How to 
decide?

Q3. Does it 
work?

Q1: What 
knowledge?



Agents in Open Worlds

Agents are built with design assumptions capturing the nature of deployment

• Model-based: representation, decision process

• ML: datasets, training regime, simulations

• Deployment can diverge or evolve from design assumptions

• Resource intensive redesign or retraining

DARPA SAIL-ON with NIWC/US Navy

• 5 scientists, 2 faculty members (Penn State and Ben Gurion), students and interns
• Publications

• Open-world learning: AIJ2024, ICAPS-D2024, AAMAS2023, AAMAS-W2023, AAAI2021, ACS2020
• Planning: ICAPS2023, SOCS2023, AAAI2023, AAAI2022, ICAPS-D2021
• Machine learning: CoLLA2022

• System-level invention submission

• Only team (of 12) to transition technology to US Navy/NIWC
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Setup

Novelty: a meaningful change in the world, a significant shift in the
distribution. Examples: a new object, a new skill, a new goal, a new constraint

State of Art: deep reinforcement learning [Mnih et al. NeurIPS2013]

• Represents knowledge as undifferentiated network weights

• Fails drastically when novelty presents itself

• Requires thorough retraining

Ideal behavior: life-long, continual learning

• Autonomous; require no human intervention in redesign or retraining

• Online; learn post-design, during performance

• Efficient; build upon what was known previously
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HYDRA
Mohan et al. AIJ 2024; Piotrowski et al. AAMAS 2023

Integrated agent system: computer vision, planning, deep ML, goal reasoning, knowledge diagnosis & repair
Key innovations: an explicit world model and metacognitive reasoning

MMOs:

fluents +- \delta

Detection

Environment

Action 
Reasoning 

& Execution
action

State 
Inference

observations
(images, state variables, reward)

Nyx 
PDDL+ 
Planner

plan

problem PDDL+ 
elements

PDDL+ 
Background 

Facts

recognition 
model

Trajectory

Base Agent Metacoginit ive Reasoning

Task
Selection

Visual
Reasoning

Decision 
Rules

Aspect 
Charachterization

Task  
Reprioritization

Heuristics Search 
over Model 

Manipulation 
Operators (MMO)

1. Detect ion 2. Character izat ion 3. Accomodat ion

Unknown 
object

Reward 
Divergence

Plan
InconsistencyTasks
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A Demonstration

Open world learning in Angry Birds

9
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How does it work?

1. Explicit event model
( : pr ocess f l yi ng
 : par amet er s ( ?b -  bi r d)
 : pr econdi t i on ( and ( bi r d_r el eased ?b)

( = ( act i ve_bi r d)  ( bi r d_i d ?b) )
( > ( y_bi r d ?b)  0) )

 : ef f ect  ( and ( decr ease  ( vy_bi r d ?b)  ( *  #t  ( gr avi t y) )
  ( i ncr ease    ( y_bi r d  ?b)  ( *  # ( vy_bi r d ?b) )
  ( i ncr ease    ( x_bi r d ?b)  ( *  #t  ( vx_bi r d ?b) ) ) ) )

 

2. Definition of inconsistency

Observation Expectation

Discount 
factor

3. Space of model design

4. Search to minimize inconsistency
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Empirical Results

• Resilient

• Fast

• Interpretable by design

Repair

[mcart: 9.0, lpole: 0, mpole:
0, forcemag: 0, gravity: 0,
...], resulting inconsistency:
0.0067561
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A Domain-Independent Framework
CartPole 2D/3D: continuous state and action; continuous control 
problem

AngryBirds: continuous state and action; initial 
condition problem

MineCraf t : discrete state and action; goal 
achievement problem

UAV: continuous state and action; mission flying
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Blending GenAI and Model-based Reasoning

1. Explicit event model
( : pr ocess f l yi ng
 : par amet er s ( ?b -  bi r d)
 : pr econdi t i on ( and ( bi r d_r el eased ?b)

( = ( act i ve_bi r d)  ( bi r d_i d ?b) )
( > ( y_bi r d ?b)  0) )

 : ef f ect  ( and ( decr ease  ( vy_bi r d ?b)  ( *  #t  ( gr avi t y) )
  ( i ncr ease    ( y_bi r d  ?b)  ( *  # ( vy_bi r d ?b) )
  ( i ncr ease    ( x_bi r d ?b)  ( *  #t  ( vx_bi r d ?b) ) ) ) )

 

2. Definition of inconsistency

Observation Expectation

Discount 
factor

3. Space of model design with GenAI

4. Search to minimize inconsistency
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Interactive Task Learning

Task Model

Concept learning 
with graph 
inference and 
generalization

Realistic 
datasets

query/percept

response/act

Agent

Knowledge

Q2: How to 
decide?Q3. Does it work?

Q1: What 
knowledge?



Agents for Unknown Tasks

Agents are designed/trained to perform specific tasks

• All tasks cannot be predicted at design time

• General agent design/training

• Generally-learning agent

DARPA GAILA with Xerox

• How can agents learn new concepts and tasks like human children?

• 5 scientists & engineers, interns

• Human-centered approach to agent design

• 5 patents on NL interaction with physical machines

• JAIR 2025 under review, IEEE RO-MAN 2021, ACS 2020; 2 theses UM,
Northwestern

• Contributes to a 10 year legacy of Interactive Task Learning research
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Children Learn in Social Constructs
Earliest learning occurs through caregiver-guided interactions with the world - guided, embodied learning

16



How Do Humans Teach?
Ramaraj, Ortiz, and Mohan IEEE ROMAN 2021

• N = 10, teach the robot how to build a multi-colored wall

• Video recording of teachers, inductive thematic analysis
• People taught

1. Compositional concepts; motivates factored task models
2. Incrementally; motivates incremental learning
3. Expressing varied intentions; motivates interactive learning
4. In a structured curriculum; motivates simplifying

assumptions

1. elements of the domain ontology

2.
 in

cr
em

en
ta

l t
ea

ch
in

g

3. varied intentions

P10: Robot, these objects are cubes. P10: Robot, these objects are green

P10: the green cone is left of the 
green cube

P10: can you move a green cylinder 
left of the green cone?

P10: Robot, this is a wall P10: Can you make a red, green, 
and blue wall?

Video
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Human-Teaching Inspired Curriculum

inform: green cone ver ify: green cone ver ify: green cone

inform: yellow cone left of red cylinder ver ify: blue cylinder left of red sphere ver ify: green cube left of blue cone

inform: move blue cylinder to left of red 
cube

react : move red cylinder to left of red 
cone

react : move red cube to left of blue 
cylinder

Teach Measure generalit y 
(t rue posit ive score)

Measure specif icit y
(t rue negat ive score)

Text

increm
ental curriculum
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AILEEN
Mohan et al. ACS 2020

Integrated agent system: computer vision, spatial reasoning, task & goal reasoning, planning, analogical
reasoning & generalization, inverse kinematics

Concept Memory

Natural Language Processing

Task & Goal Reasoning: Soar (Laird 2012)

Finite State Transducer
Abductive 
Rule
Learning

Interaction Channel

verify: "a green cylinder"
intent content

Inverse Kinematics

YoLo (Redmon et al. 2016)

Auto-encoder

Jigsaw loss

Environment &

Situational Channel

Spatial Encoding

Computer Vision

Artificial

Interactive

Trainer

Curriculum

Insights from
human-participant

studies
(Ramaraj et al. 

2020, 2021)

Evaluation

Protocol
Base

Target

Generalized Concept 

SME 
(Forbus et al. 2016), 

MAC/FAC 
(Forbus et al. 1995)

SAGE (McLure et al. 2015)

QSRLib 
(Gatoulis et al.  2016)
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Factored Task Models

Task T

parameters: plate, bread, knife, toaster [T(op, ob, ok, ot)]
predicates: state [toasted(ob)], configuration [on(ob, op)]
availability: bread exists, knife exists, plate exists [op, ob, ok, ot →
propose(T)]
children tasks: go-to, slice, retrieve
policy: if holding bread and not sliced, slice bread [holds(ob) ∧
¬sliced(ob) → slice(ob)]
termination: bread is toasted, bread is on plate [toasted(ob) ∧
on(ob, op)]
model: [op, ob, ok, ot → toasted(ob) ∧ on(ob, op)]
performance criterion: shortest distance

Padmakumar et al. 2022: ‘Make a plate of toast”

• Benefits vis-a-vis end-to-end representations: composable, incrementally-learnable, hierarchical
• Mohan and Laird AAAI 2014: availability, policy, termination, model
• Kirk and Laird, IJCAI 2019: games, Mininger and Laird, AAAI 2022: complex task hierarchy
• Mohan et al. ACS 2020, Hancock et al. JAIR 2025 (in review): predicates grounded in visuo-spatial
information
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Interactive Concept Learning
Mohan et al. ACS 2020; Hancock, Mohan, & Forbus JAIR 2025 (in review)

Grounded definition of
on(o1, o2)
Scene Graph Example

CV: shapeA(o1), colorA(o1), sizeA(o1),
shapeB(o2), colorB(o2), sizeB(o2)
CDC: nZ(o1,o2), oZ(o1,o2), oX(o1,o2)
RCC: touchX(o1,o2), intersectZ(o1,o2)

Cognitive theory of structure
mapping (Gentner AP 1987)
sim(Gs,Gc) =∑

e w(e)× corr(e,Gc)

Scene Teacher Scene Graph Task Cont rol Concept  Memory

Pyramid is on 
blue cube. 
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Empirical Observations

• Experimental scheme
• A trial of N lessons
• Lesson: an instantiation, generality measurement (true positive
rate), specificity measurement (true negative rate)

• Findings:
• General: visual, spatial, action & events, composite objects
• Bidirectional: recognition and creation
• Fast: learns from few examples, rapid generalization, small
leakage

• Active: learns only when needed

• A demonstration

visual

spatial

action

22
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Architecting LLMs with Task Reasoning

Interaction Channel

verify: "a green cylinder"
intent content

Inverse Kinematics

YoLo (Redmon et al. 2016)

Auto-encoder

Jigsaw loss

Environment &

Situational Channel

Spatial Encoding

Computer Vision

Artificial

Interactive

Trainer

Curriculum

Insights from
human-participant

studies
(Ramaraj et al. 

2020, 2021)

Evaluation

Protocol
Base

Target

Generalized Concept 

SME 
(Forbus et al. 2016), 

MAC/FAC 
(Forbus et al. 1995)

SAGE (McLure et al. 2015)

QSRLib 
(Gatoulis et al.  2016)

Concept Memory

Natural Language Processing

Task & Goal Reasoning: Soar (Laird 2012)

Finite State Transducer
Abductive 
Rule
Learning
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Architecting LLMs with Task Reasoning
Grover and Mohan, ICAPS demonstration 2024

Few-Shot 
Prompt

Large 
Language 

Model

World - AI2Thor
Identification

Task 
Construction

percepts

actions

In-context Learning
ISR

NL Task 
Request

current 
state

goal

planning

Linguist ic Reasoning Grounded Reasoning Sequent ial Decision Making

• SoA frames language-to-action problem as a sequence to
sequence problems

• Our approach frames it as a task model acquisition problem
• In-context learning for language to meaning representation
• Grounded reasoning to instantiate a goal
• Planning to generate a sequence of actions

• Ongoing work: concept memory with LLM-based pattern
matching

language: Please clean that mug.
ISR: {INTENT: request, action:0: {TYPE: clean-task, obj:0: 
{TYPE: mug}}}
language: Can you please wash this plate?
ISR: ....
language: ....
ISR: ...
....
language: Please place t he bread in t he f r idge.

ISR: {INTENT: request, action:0: {TYPE: find-and-put-task, 
obj:0: {SPEC: any, TYPE: apple}, obj:1: {SPEC: unique, TYPE: 
bread}, rel:0: {TYPE: in, ARG1: obj:0, ARG2: obj:1}}}

Fe
w

-s
ho

t P
ro

m
pt

Re
sp

on
se

isa(o1, door), isa(o2, stove), isa (o3, fridge), isa (o4, 
knife), isa (o5, bread), isa (o6, countertop)...., 
at(o1, <loc1>), at(o2, <loc2>), at(o3, <loc3>)....
iscontainer(o3), issurface(o6),....
....

in(o5, o3)Generated Goal

Current  State
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Health Behavior Coaching

query/percept

response/act

Agent

Knowledge

Q2: How to 
decide?Q3. Does it work?

Q1: What 
knowledge? Human Model

Realistic datasets
Expert alignment

Acceptability
Observational 

Study



Agents for Human Learning

Agents are designed for static human needs & preferences

• Human are continual learners and evolve throughout our lives

• Adoption depends on responsiveness

NSF/NIH SCH with Kaiser Permanente

• How can agents help people develop healthy behaviors?
• Publications

• AI: IAAI/AAAI2017
• HCI: TiiS2020, TiiS2021
• Medicine: JMIR2019, JMIR2017
• Engineering: EMBS2016

• First ecological, long-term evaluation of adaptive AI behavior

• Collaboration with psychologists, user-experience
researchers, clinicians, patients

25



Coaching Agent in mHealth

• Support sedentary individuals in regular exercise

• AHA recommendation: 30 minutes, 5 times a week

• Designed in collaboration with a physical therapist

Collaborative Adaptive Goal Setting

1. Determine current exercise volume

2. Propose different extents, evaluate with user

3. Assume a uniform step growth model until AHA goal

4. Schedule exercise for the week, maximize opportunity

5. Measure behavior, self-efficacy, & difficulty

6. Revise growth model, replan next week

26



Evaluation Paradigm
Mohan et al. TiiS 2020; Mohan et al. AAAI 2017

1. Realistic Datasets: simulated patient profiles
2. Alignment: choice studies with expert panel
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Evaluation Paradigm
Mohan et al. TiiS, 2020; Hartzler et al. EMBC 2016

3. Acceptability cognitive walkthroughs with patients
N=15, diabetes and depression

• Could provide users with control (P9)

• Helps you take responsibility (P1), with more
choice (P7)

• Allows you to set goals that you can strive for (P8).

4. Impact ecological observational study
N=21, 6 weeks

1. Increased exercise volume by 20%

2. Over-optimistic with self-assessment

3. Personalized goals + collaborative selection led to
more successful completion
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Evaluating GenAI Systems on Realistic Datasets
Rajagopal et al. HealthIUI at ACM IUI 2025

Real problem: can GenAI support people’s informational needs?

• Studied patient-radiologist dyadic sensemaking interaction

• Identified 10 different themes and curated a realistic QA dataset
• Evaluated ChatGPT and Claude wrt expert responses.

1. High error rate (ChatGPT: 20%, Claude: 40%)
2. Inability to ground interaction in images
3. GenAI responses were long; had irrelevant, superfluous, banal

elaborations
4. Radiologist response geared towards helping decisions, while GenAI

responses towards extensive enumeration and definitions
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Agent Frameworks
Complex behavior emerges from an interplay of diverse, modular reasoning and execution

Orchestrator

agentA agentB agentC agentD

User Request Response

Task Ledger Progress Ledger

Bansal, G., Vaughan, J.W., Amershi, S., Horvitz, E., Fourney, A., Mozannar, H., Dibia, V. and Weld, D.S., 2024. Challenges in Human-Agent
Communication. arXiv:2412.10380
Fourney, A., Bansal, G., Mozannar, H., Tan, C., Salinas, E., Niedtner, F., Proebsting, G., Bassman, G., Gerrits, J., Alber, J. and Chang, P., 2024.
Magentic-one: A Generalist Multi-Agent System for Solving Complex Tasks. arXiv:2411.04468. 30



Agent Frameworks
Complex behavior emerges from an interplay of diverse, modular reasoning and execution

Orchestrator

agentA agentB agentC agentD

User Request Response

Task Ledger Progress Ledger

agentO agentP

agentCog

Semant ic 
Orchest rat ion

Agent  Heterogeneit y Agent  Complexit y

Bansal, G., Vaughan, J.W., Amershi, S., Horvitz, E., Fourney, A., Mozannar, H., Dibia, V. and Weld, D.S., 2024. Challenges in Human-Agent
Communication. arXiv:2412.10380
Fourney, A., Bansal, G., Mozannar, H., Tan, C., Salinas, E., Niedtner, F., Proebsting, G., Bassman, G., Gerrits, J., Alber, J. and Chang, P., 2024.
Magentic-one: A Generalist Multi-Agent System for Solving Complex Tasks. arXiv:2411.04468. 30



Semantic Orchestration
Augment GenAI inference with compositional SDM (Q2/reasoning)
Modular organization of decision control; help user set appropriate expectations

Run a program 
that <does 

task>

satisfy T?

Yes

Code

No

T

Code 
Generator

Evaluator
[T]

T

Extract 
Task

Spec T
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Semantic Orchestration
Augment GenAI inference with compositional SDM (Q2/reasoning)
Modular organization of decision control; help user set appropriate expectations

Run a program 
that <does 

task>

satisfy T?

Yes

Code

No

T

Code 
Generator

Evaluator
[T]

T

Extract 
Task

Spec T

Code 
Generator

Evaluator
[T]code

Yes, code
Evaluator

[D]

satisfy D?

Yes

No

satisfy T?No

Extract 
Design 
Pattern 

D

if D
Yes

No

R

Extract 
Task

Spec T

31



Semantic Orchestration
Augment GenAI inference with compositional SDM (Q2/reasoning)
Modular organization of decision control; help user set appropriate expectations

Run a program 
that <does 

task>

satisfy T?

Yes

Code

No

T

Code 
Generator

Evaluator
[T]

T

Extract 
Task

Spec T

Code 
Generator

Evaluator
[T]code

Yes, code
Evaluator

[D]

satisfy D?

Yes

No

satisfy T?No

Extract 
Design 
Pattern 

D

if D
Yes

No

R

Extract 
Task

Spec T

pre-condit ions: new_code 
and eval_T(pass)
pr ior it y: ~

Code 
Generator

pre-condit ions: 
new T or eval_T(fail) or 
new D or eval_D(fail) 
assert s: new code
pr ior it y: ~

Decision Process

propose - evaluate - execute

pre-condit ions: 
new code and T
assert s: eval_T
pr ior it y: !

Evaluator
[T]

pre-condit ions: 
new code and D
assert s: eval_D
pr ior it y: !

Evaluator
[D]

Extract 
Task

Spec T

pre-condit ions: 
user input
assert s: new T
pr ior it y: ~

Extract 
Design 
Pattern 

D

pre-condit ions: 
user 
asserts: new D
pr ior it y: ~

Working Memory 
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Agent Heterogenity
Agents vary in function, purpose, and inference

Orchest rator

Learning 
intent

 

Problem 
Generator

Problem 1Problem 2

Content

Problem 
N

Scaffolds

Lesson

Indian
hindi-belt
female
...

Human Model

Curr iculum 
Agent

Course 
Ontology

World Model

P(c| E)

Skil l  
Est imator

Experience

Human Model

Lesson 
Planner

Object ive
argmaxc[
P(c| E) *

sim(c | E, CO) *
nov(c| E) *

]

Task Model
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Agent Complexity
Agent with multiple cognitive capabilities

Working Memory
what currently exists world, task, reasoning? 

Procedural 
Memory
how do I do x?

Episodic 
Memory
what happened 

previously?

Semantic 
Memory

what is world structure, 
concepts?

Perception Action

Decision 
Process

Sensors and Actuators

Compilation

RL

Encoding Learning

Laird, J.E., Lebiere, C. and Rosenbloom, P.S., 2017. A Standard Model of the Mind: Toward a Common Computational Framework Across
Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics. AI Magazine, 38(4), pp.13-26. 33



Agent Complexity: Cognitive Architectures for the Real World

Working Memory 

Decision 
Process

ViT (Dosovitskiy et al. ICLR2021) LDM (Rombach et al. CVPR2021) DP  (Chi et al. RSS2023)

Procedural Memory
how do I do x?

Compilation

RLPattern 
Matching

Episodic Memory
what happened 

previously?

Encoding

Pattern 
Matching

Semantic Memory
what is world 

structure, concepts?

Learning

Pattern 
Matching

Concrete 
Inference

Contextual 
Task Reasoning

Conceptual 
Understanding

Also, Sumers, T.R., Yao, S., Narasimhan, K. and Griffiths, T.L., 2023. Cognitive Architectures for Language Agents. Transactions in Machine
Learning Research. 34



Thank You!

Text

World models: Piotrowski et al. ICAPS2023, Piotrowski et al. 
ICAPS2021
Task models: Grover and Mohan, ICAPS-D2024, Mohan et al. 
IUI-W2019, Mohan and Laird AAAI2011
Human models: Ramaraj et al. ROMAN2021, Mohan TiiS2021, 
Mohan et al. TiiS2020, Mohan et al. JAIR2019, Mohan et al. 2017

Learning Fast  & Slow
Laird and Mohan AAAI2018, Blue 
Sky Award

Open-world Learning
Mohan et al. AIJ2024
Piotrowski et al. ICAPS-D2024 
Piotrowski et al. AAMAS2023

Int eract ive Task Learning
Mohan et al. ACS2020
Mohan and Laird AAAI2014

Analogical Generalizat ion
Hancock et al. JAIR2025 
(in-review)

Realist ic benchmarks 
Rajagopal et al. HealthIUI2025

Observat ional/Choice Studies
Mohan TiiS2020
Mohan et al. JAIR2019
Mohan et al. AIES2019

RCT part ial-factor ial design
Mohan TiiS2021
Springer et al. JMIR2017
Pirolli et al. JMIR2017

query/percept

response/act

Agent

Q2: How to 
decide?Q3. Does it work?

Q1: What 
knowledge?

My Amazing Colleagues

Shreya Rajagopal, Poorvesh Dongre, William Hancock, Preeti Ramaraj, Sachin Grover, Wiktor Piotrowski, Jacob Le, Kalai
Ramea, Matthew Klenk, Charles Ortiz, Roni Stern, Johan de Kleer, Matthew Shreve, Victoria Bellotti, Bob Price, Anusha
Venkatakrishnan, Andrea Hartzler, Peter Pirolli, James Kirk, Aaron Mininger, Ken Forbus, John Laird
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